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1. Consider x ∈ S2 such that Tx, that is, the tangent space of x, shares the
same normal vector as P (that is, in a sense, x is a pole of A). This will be
our candidate for point C ∈ S2 which is equidistant from all points on A. Now
consider the great circle, G, of S2 which is parallel to (does not intersect with)
the “latitude” A (note that in the case where A is a great circle of S2, we choose
A to be G and our argument will still hold). Now, because A and G are parallel,
we know that x must too be a pole of G. Because x is a pole of G and G is
a great circle, we know that the distance from x to any point on G is π

2 , and
because A and G are parallel we know that the spherical segments connecting
points on A and G are of equal length, call that length c (side note: this can
be seen by choosing any great circle, L, on S2, and connecting the points of A
and G only by using the spherical segments whose poles are on L). Now, we
know that the distance between x and G as π

2 = r + c, where c is the constant
mentioned earlier, well, solving for r we have r = π

2 − c and because we know
that c is constant, we can conclude that r is constant (and because the max
value of c is π

2 , we know r > 0). Thus, we have shown that x is exactly the
point C we were looking for, and therefore A is a circle in spherical geometry.
�

2. Let the components of v be v1, v2, v3. Because we know that vectors in v⊥

are all only those vectors x =< x1, x2, x3 > that satisfy v1x1 + v2x2 − v3x3 = 0
where v1, v2, v3 are constants, we see that a choice of any two x components
immediately fixes the third (e.g. x3 = v1x1+v2x2

v3
), that is, there are only two

degrees of freedom, which means that the set of x’s span a plane (alternatively,
one may notice that, because v1, v2, v3 are constants, the equation becomes the
equation for a plane in standard form).
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3. We will employ that: sinh(x) + cosh(x) = ex, sinh(−x) = − sinh(x), and

cosh(x) = cosh(−x). We start with sinh(x + y) = ex+y−e−x−y

2 = exey−e−xe−y

2 ,
but we notice that we can rewrite each of these evar terms using the identity
stated earlier, so we achieve

(sinh(x) + cosh(x))(sinh(y) + cosh(y))− (sinh(−x) + cosh(−x))(sinh(−y) + cosh(−y))

2

which, by two of the identities above (sinh(−x) = − sinh(x) and cosh(x) =
cosh(−x)) is equal to

(sinh(x) + cosh(x))(sinh(y) + cosh(y))− (− sinh(x) + cosh(x))(− sinh(y) + cosh(y))

2

now multiplying out we have 1
2 (sinh(x) sinh(y)+sinh(x) cosh(y)+cosh(x) sinh(y)+

cosh(x) cosh(y)−sinh(x) sinh(y)+sinh(x) cosh(y)+cosh(x) sinh(y)−cosh(x) cosh(y)).
We notice that the 1st and 5th term cancel as well as the 4th and 8th, and the

remaining 4 can be combined into two so we have 2 sinh(x) cosh(y)+2 cosh(x) sinh(y)
2 ,

and the 2’s cancel so we may conclude that sinh(x + y) = sinh(x) cosh(y) +
cosh(x) sinh(y).

4. Suppose v 6= 0 and Φ(v, u) = 0,∀u ∈ R3. Well, that would mean that
∃v1, v2, v3, not all zero such that ∀u1, u2, u3 ∈ R, v1u1 + v2u2− v3u3 = 0. Well,
suppose you have such u1, u2, u3, that means that u3 = v1u1+v2u2

v3 , but because
u3 can vary freely, independent of u1, u2, then u3 may be chosen so that this
equation does not hold (for instance, simply add 1 to u3 and the equation will
no longer hold). So therefore one of our assumptions was wrong, namely that
v 6= 0, and thus we must have that v = 0.

5. Because we know that there exists a bijection between H2 and K (where
K = (x1, x2, 1) ∈ R3 | x2

1 + x2
2 < 1), a proof of Desargues in K will suffice to

prove Desargues in H2. We continue with our proof for Desargues in Euclidean
geometry from class, as the interior of K is a Euclidean space with the only
modified condition that now all points be ∈ K.

P = k1A+(1−k1)A′, P = k2B+(1−k2)B′, and P = k3C +(1−k3)C ′ (by the-
orem 1). Thus (by taking the difference of the last two) 0 = k2B + (1− k2)B′−
k2C + (1− k3)C ′ ⇒ k3C−k2B

k3−k2 = (1−k2)B′−(1−k3)C′
k3−k2 ⇒ L = k3

k3−k2C −
k2

k3−k2B.⇒
(k3 − k2)L = k3C − k2B. By similarity, we see that the same is the case for M
and K, that is we have the following:

(k3 − k2)L = k3C − k2B

(k1 − k3)M = k1A− k3C

(k2 − k1)K = k2B − k1A
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Now the sum of these equations means that k2−k2)L+(k1−k3)M+(k2−k1)K =
0 and we notice that the sum of the coefficients (k3−k2)+(k1−k3)+(k2−k1) = 0,
and therefore we may conclude by theorem 2 that K,L, and M are collinear.
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