MATH 551 - Problem Set 9

Joe Puccio

October 30, 2014

1. Consider = € S? such that T}, that is, the tangent space of z, shares the
same normal vector as P (that is, in a sense, z is a pole of A). This will be
our candidate for point C' € S? which is equidistant from all points on A. Now
consider the great circle, G, of S? which is parallel to (does not intersect with)
the “latitude” A (note that in the case where A is a great circle of S?, we choose
A to be G and our argument will still hold). Now, because A and G are parallel,
we know that x must too be a pole of G. Because x is a pole of G and G is
a great circle, we know that the distance from x to any point on G is 7, and
because A and G are parallel we know that the spherical segments connecting
points on A and G are of equal length, call that length ¢ (side note: this can
be seen by choosing any great circle, L, on S2, and connecting the points of A
and G only by using the spherical segments whose poles are on L). Now, we

s

know that the distance between x and G as § = r + ¢, where c is the constant

mentioned earlier, well, solving for r we have r = § — ¢ and because we know
that ¢ is constant, we can conclude that r is constant (and because the max
value of ¢ is 5, we know r > 0). Thus, we have shown that = is exactly the
point C' we were looking for, and therefore A is a circle in spherical geometry.

O

2. Let the components of v be v1, v, v3. Because we know that vectors in vt

are all only those vectors =< 1, T2, x3 > that satisfy vix1 + voxs —v3x3 =0
where v1,v9,v3 are constants, we see that a choice of any two x components
immediately fixes the third (e.g. a3 = %), that is, there are only two
degrees of freedom, which means that the set of 2’s span a plane (alternatively,
one may notice that, because v1,v2,vs are constants, the equation becomes the
equation for a plane in standard form).



3. We will employ that: sinh(z) 4 cosh(x) = e, sinh(—z) = — sinh(z)7 and
cosh(z) = cosh(—z). We start with sinh(z + y) = £ e = fetoe e P
but we notice that we can rewrite each of these " terms using the 1dent1ty

stated earlier, so we achieve

(sinh(z) + cosh(x))(sinh(y) + cosh(y)) — (sinh(—z) 4 cosh(—z))(sinh(—y) + cosh(—y))
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which, by two of the identities above (sinh(—z) = —sinh(z) and cosh(z) =
cosh(—2x)) is equal to

(sinh(z) + cosh(x))(sinh(y) + cosh(y)) — (— sinh(x) + cosh(z))(— sinh(y) + cosh(y))
2

now multiplying out we have £ (sinh(z) sinh(y)+sinh(z) cosh(y)+cosh(z) sinh(y)+
cosh(x) cosh(y)—sinh(x) sinh(y)+sinh(x) cosh(y)+cosh(x) sinh(y)—cosh(x) cosh(y)).
We notice that the 1st and 5th term cancel as well as the 4th and 8th, and the
remaining 4 can be combined into two so we have 2522(2) COSh(yHQ cosh(z) sinh(y)

and the 2’s cancel so we may conclude that sinh(z + y) = smh( ) cosh(y) +
cosh(z) sinh(y).

4. Suppose v # 0 and ®(v,u) = 0,Vu € R3. Well, that would mean that
Juv1, v9, v3, not all zero such that Yuy,us,us € R, viuy + vous — vzuz = 0. Well,
suppose you have such u1, ug, us, that means that ug = 210242 byt because
ug can vary freely, independent of w1, us, then ug may be chosen so that this
equation does not hold (for instance, simply add 1 to us and the equation will
no longer hold). So therefore one of our assumptions was wrong, namely that
v # 0, and thus we must have that v = 0.

5. Because we know that there exists a bijection between H? and K (where
K = (x1,22,1) € R® | 23 + 23 < 1), a proof of Desargues in K will suffice to
prove Desargues in H?. We continue with our proof for Desargues in Euclidean
geometry from class, as the interior of K is a Euclidean space with the only
modified condition that now all points be € K.

P = k1A+(1 7k1)A/, P = kQB+ (]. — kg)B/, and P = k3C+ (]. 7]?3)0/ (by the-
orem 1). Thus (by taking the difference of the last two) 0 = kgB +(1—ko)B' —

5 1—ko)B' —(1—k3)C’
koC + (1 — k) O = RaCohaB - Uh)B Ik 7 2B =

(ks — ko)L = k3C — ko B. By blmllal"lty, we see that the same is the case for M
and K, that is we have the following:

(ks — ko)L = ksC — ko B

(k1 — ks)M =k, A — ksC
(ks — k1)K = kyB — ki A



Now the sum of these equations means that ko —ko) L+ (k1 —k3) M+ (ke —k1) K =
0 and we notice that the sum of the coefficients (k3 —ko)+ (k1 —ks3)+(ka—k1) = 0,
and therefore we may conclude by theorem 2 that K, L, and M are collinear.



